536

34 Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials

55 Escamilla-Alvarado, C., Vazquez-Barragán, J.A., Ponce-Noyola, M.T. et al.

(2011). A novel biorefinery approach for biofuels and holocelullolytic enzymes

production from organic wastes. In: Bioremediation and Sustainable Environ-

mental Technologies-2011. Battelle First International Symposium on Bioremedi-

ation and Sustainable Environmental Technologies (eds. G.B. Wickramanayake

and H. Rectanus) Reno, NV, USA. Columbus, OH, USA: Battelle.

56 Abu Yazid, N., Barrena, R., Komilis, D. et al. (2017). Solid-state fermentation as

a novel paradigm for organic waste valorization: a review. Sustainability 9 (2):

224.

57 Mussatto, S.I., Dragone, G., and Roberto, I.C. (2006). Brewers’ spent grain: gen-

eration, characteristics and potential applications. Journal of Cereal Science 43:

1–14.

58 Hassona, H.Z. (1993). High fibre bread containing brewer’s spent grains and its

effect on lipid metabolism in rats. Food/Nahrung 37: 576–582.

59 Ktenioudaki, A., Crofton, E., Scannell, A. et al. (2013). Sensory properties and

aromatic composition of baked snacks containing brewer’s spent grain. Journal

of Cereal Science 57: 384–390.

60 Gawlik-Dziki, U., Kaszuba, K., Piwowarczyk, K. et al. (2015). Onion skin – raw

material for the production of supplement that enhances the health-beneficial

properties of wheat bread. Food Research International 73: 97–106.

61 Seidu, K.T., Osundahunsi, O.F., Olaleye, M.T. et al. (2015). Amino acid com-

position, mineral contents and protein solubility of some lima bean (Phaseolus

lunatus Walp) seeds coat. Food Research International 73: 130–134.

62 Ong, K.L., Kaur, G., Pensupa, N. et al. (2017). Trends in food waste valoriza-

tion for the production of chemicals, materials and fuels: case study South and

Southeast Asia. Bioresource Technology https://doi.org/10.1016/j.biortech.2017.06

.076.

63 Torri, I.D.V., Paasikallio, V., Faccini, C.S. et al. (2016). Bio-oil production of

softwood and hardwood forest industry residues through fast and intermediate

pyrolysis and its chromatographic characterization. Bioresource Technology 200:

680–690.

64 Santos, J., Ouadi, M., Jahangiri, H. et al. (2019). Integrated intermediate cat-

alytic pyrolysis of wheat husk. Food and Bioproducts Processing 114: 23–30.

65 Bridgwater, A.V. (2012). Upgrading biomass fast pyrolysis liquids. Environ-

mental Progress & Sustainable Energy 31: 261–268. https://doi.org/10.1002/ep

.11635.

66 Elliott, D.C., Biller, P., Ross, A.B. et al. (2015). Hydrothermal liquefaction of

biomass: developments from batch to continuous process. Bioresource Technol-

ogy 178: 147–156.

67 Yung, M.M., Jablonski, W.S., and Magrini-Bair, K.A. (2009). Review of catalytic

conditioning of biomass-derived syngas. Energy & Fuels 23: 1874–1887.

68 Jahangiri, H., Bennett, J., Mahjoubi, P. et al. (2014). A review of advanced cata-

lyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass

derived syn-gas. Catalysis Science and Technology 4: 2210–2229.